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     Hedge funds tend to use investment tools with non-linear payoff and as such their return distribution are non- 

Gaussian. For this reason traditional risk measures are inadequate, as indeed are risk adjusted performance 

measures such as Sharpe ratios that may be more easily manipulated. Moreover, traditional risk measures tend 

to be highly correlated with one another, and as such using a number of these measures does not provide 

additional insight into the riskiness of portfolios. This note studies alternative risk measures that tend to be less 

correlated with traditional risk measures and which are more appropriate for non-Gaussian distributions. The 

note compares traditional and alternative risk measures for group of 848 hedge funds using monthly data 

between March 2004 and February 2009. Only funds with at least 36 months of data during this period were 

included in the analysis. 

I. Traditional Risk Measure 

 
     We calculate four widely used traditional risk measures 
on our database of hedge fund returns. These include: 

 volatility (𝜎),  

 worst return (𝑟𝑚𝑖𝑛 ), 

 value at risk at 1% level (𝑉𝑎𝑅1%), 

 maximum drawdown (MaxDD).  
Table 1 provides the correlations between these four 
measures. 
 

 𝝈 𝒓𝒎𝒊𝒏 𝑽𝒂𝑹𝟏% MaxDD 

𝝈 1 -0.88 -0.99 -0.81 

𝒓𝒎𝒊𝒏 -0.88 1 0.91 0.87 

𝑽𝒂𝑹𝟏% -0.99 0.91 1 0.87 

MaxDD -0.81 0.87 0.87 1 

Table 1: The correlations between traditional risk measures 

It is clear these four risk measures are strongly correlated 
with one another, especially value at risk and the volatility. 
The strong correlations demonstrate that using all four risk 
measures to determine the riskiness of a portfolio is largely 
redundant. If the volatility is used as the risk measure, then 
there is very little additional information to be gleaned by 
using value at risk. While there is some marginal information 
in maximum drawdown, it is limited. In short, using more risk 
measures does not necessarily equate to more accurate 
measurement of risk. More likely, they are just different 
ways of displaying the same information. A failure to 
recognize this fact could lead to a false sense of comfort in 
estimating the risks of an investment portfolio.  
 

II. Cornish Fisher Value at Risk 

 
     One of the alternative risk measures that is commonly 
used in the literature is Cornish Fisher Value at risk 
(𝑉𝑎𝑅𝑝 ,𝑐𝑓 ),While the traditional VAR only uses the second 

moment of a return distribution, i.e. volatility, the  𝑉𝑎𝑅𝑝 ,𝑐𝑓  

uses the third and fourth moments of a distribution namely 

skew and kurtosis. However, 𝑉𝑎𝑅𝑝 ,𝑐𝑓 is a good 

approximation of VAR if and only if : 

 The return distribution is reasonably close to being 
Gaussian, In other words, the skew and kurtosis 
are close to 0. 

 The confidence level, at which VaR is calculated, is 
not very low. 

In our data sample, about 48% of the hedge funds have 
skew less than -1, and as such the first requirement for 
using 𝑉𝑎𝑅𝑝 .𝑐𝑓 is not met.  While most traditional VAR 

measures use a 5% confidence level, we believe that 
measuring risk at this level is inadequate. This is because 
with a 𝑉𝑎𝑅5% level calculated on monthly returns the 

probability of a loss larger than that level over a year is 46%. 
This is not a rare event and therefore not acceptable as a 
risk measure. If we wish to make the VAR level more 
meaningful we should calculate 𝑉𝑎𝑅  at the 1% confidence 

level; in that case the second requirement for using 𝑉𝑎𝑅𝑝 .𝑐𝑓  

is not satisfied. When both requirements are not satisfied,  
𝑉𝑎𝑅𝑝 ,𝑐𝑓  is not a good risk measure. A quick analysis 

confirms this point. The standard 𝑉𝑎𝑅𝑝   and 𝑉𝑎𝑅𝑝 ,𝑐𝑓 of a 

portfolio are defined as: 

𝑉𝑎𝑅𝑝 = 𝑟 + 𝜎𝑧𝑝  (1) 

𝑉𝑎𝑅𝑝 ,𝑐𝑓 = 𝑟 + 𝜎𝑧𝑝 ,𝑐𝑓  (2) 

where 𝑟  is the mean return, and 𝑧𝑝  is the quantile function 

of  the Gaussian distribution with a standard deviation of 𝜎, 

and 

𝑧𝑝 ,𝑐𝑓 = 𝑧𝑝 +
𝑧𝑝

2 − 1

6
𝑆 +

𝑧𝑝
3 − 3𝑧𝑝

24
𝐾 +

5𝑧𝑝 − 2𝑧𝑝
3

36
𝑆2 (3) 

is the Cornish Fisher quantile function of  the distribution 

with skew 𝑆 and kurtosis 𝐾1. We would expect 𝑉𝑎𝑅𝑝 ,𝑐𝑓  to be 

smaller than 𝑉𝑎𝑅𝑝  for negative values of 𝑆.  For this to hold,  

 Both 𝑧𝑝  and 𝑧𝑝 ,𝑐𝑓  should be negative  

 Both 𝑧𝑝  and 𝑧𝑝 ,𝑐𝑓   should decrease as 𝑝 decreases. 

  𝑧𝑝 ,𝑐𝑓  should decrease as 𝑆 decreases. 

These conditions are met for 𝑧𝑝 , but do not always hold true 

for 𝑧𝑝 ,𝑐𝑓 . It is clear that the last term in Eq. 3 will be positive 
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 In this note, parameter 𝐾 is the excess kurtosis, and 𝐾 = 0 for the 

Gaussian distribution. 
 



when both 𝑆 and 𝑧𝑝are large and negative. Fig. 1 shows 

𝑧𝑝 ,𝑐𝑓  for different values of 𝑆 and 𝑝 but with 𝐾 = 0.  From 

Fig. 1 it is clear that; 
1. 𝑧𝑝 ,𝑐𝑓 does not monotonically decrease as 𝑝 

decreases.  

2. 𝑧𝑝 ,𝑐𝑓  does not always decrease as 𝑆 decreases. It 

increases as 𝑆 deceases for small values of 𝑝. 

 
In fact 𝑧𝑝 ,𝑐𝑓  stops decreasing and turns upwards when 

𝑝 ≤ 1% and 𝑆 ≤ −1. Given that 48% of the hedge funds in 

our data sample have 𝑆 < −1  we do not think Cornish 

Fisher value at risk is a good risk measure for hedge 
funds.
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Figure 1: The VaR with different skewness levels. The 

horizontal axis is the probability 𝒑 at which the VaR is 
calculated. The black double line is the normal 𝑽𝒂𝑹𝒑. The 

red solid line is 𝑽𝒂𝑹𝒑,𝒄𝒇 𝑺 = −𝟎.𝟖 , the Cornish Fisher 

VaR with skewness at -0.8. The long dashed green line is 
𝑽𝒂𝑹𝒑,𝒄𝒇(𝑺 = −𝟏) . The purple dashed line is 

𝑽𝒂𝑹𝒑,𝒄𝒇(𝑺 = −𝟏.𝟐). And the dotted line is 𝑽𝒂𝑹𝒑,𝒄𝒇(𝑺 =

−𝟏.𝟒). 

 
 

III. Extreme Value Theory 

 
     The traditional risk measures do not explicitly take into 
account non-Gaussian tails. And this leads to an 
underestimation of the risk under extreme market conditions. 
As discussed above, the commonly used Cornish-Fisher  
𝑉𝑎𝑅𝑝 ,𝑐𝑓  fails to address these extreme cases. Extreme value 

theory is an alternative to study these extreme cases. Under 
extreme theory, the probability distribution at the tails of a 
return distribution is modeled as 

𝑓 𝑟 =
1

𝜆
 1 + 𝜉

𝑟 − 𝜇

𝜆
 
−1 𝜉 −1

 (4) 

where 𝑟 is the return, 𝜇 is the location parameter, the 𝜉  is 

shape parameter, and 𝜆  is scale parameter. These 
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 In principle, including higher order moments can help. However, there 

is estimation uncertainty due to the sample size. The estimation 
uncertainty is about 0.3 for the skewness, and is about 0.54 for the 
kurtosis. The estimation uncertainties for 5th and 6th order normalized 
moments are about 2.8 and 7.3 respectively. To reduce them to 0.5, the 
sample size has to be about 2400 and 24000, respectively. This is not 
possible for monthly return data. 

parameters are determined from a deterministic fit to historic 
data. Given the distribution, the 𝑉𝑎𝑅𝑝 ,𝐸𝑉𝑇 , is determined 

such that 

𝑝 =  𝑓 𝑟 𝑑𝑟
𝑉𝑎𝑅𝑝 ,𝐸𝑉𝑇

−∞

 (5) 

where 𝑝 is the chosen confidence level, and is set at 1%. 

The 𝑉𝑎𝑅𝑝 ,𝐸𝑉𝑇  will better capture the probability of rare 

events. However, given that 𝑉𝑎𝑅𝑝 ,𝐸𝑉𝑇 is the least amount of 

loss if the low probability event were to happen, its use will 
be an underestimation of the potential loss in case of an 
extreme event. We therefore use the expected shortfall                
𝐸𝑆𝑝 ,𝐸𝑉𝑇  measure instead of 𝑉𝑎𝑅𝑝 ,𝐸𝑉𝑇  to capture the 

magnitude of the loss, where 𝐸𝑆𝑝 ,𝐸𝑉𝑇  is defined as 

𝐸𝑆𝑝 ,𝐸𝑉𝑇 =  𝑟𝑓 𝑟 𝑑𝑟
𝑉𝑎𝑅𝑝 ,𝐸𝑉𝑇

−∞

 (6) 

The expected shortfall is also called Conditional Value at 
Risk and is the expected loss if the extreme event were to 
occur. 
 
   We calculated  𝑉𝑎𝑅𝑝  and 𝐸𝑆𝑝 ,𝐸𝑉𝑇  for a sample of 206 

hedge funds from our database all of which had a single 
month loss larger than 10% in September 2008. Using data 
through August 2008, 𝐸𝑆𝑝 ,𝐸𝑉𝑇  identified 124 hedge funds 

from this group as having the potential such a loss while 
𝑉𝑎𝑅𝑝  identified 52 hedge funds from this group as having 

the potential for such a loss. More importantly, all 52 hedge 
funds that were identified by 𝑉𝑎𝑅𝑝  were also correctly 

classified by 𝐸𝑆𝑝 ,𝐸𝑉𝑇 . In short, the use of 𝐸𝑆𝑝 ,𝐸𝑉𝑇  significantly 

increases the probability of identifying hedge funds with 
potentially large losses in extreme situations. 
   
     We introduce a new risk measure, the RCG risk measure, 
𝑅𝐶𝐺𝑝 ,𝐸𝑉𝑇 , which is also based off extreme value theory. This 

measure is the difference between 𝐸𝑆𝑝 ,𝐸𝑉𝑇  and the risk 

related to the Gaussian tail of the return distribution of the 
manager. In other words, it measures the unexpected risk in 
extreme cases. Table 2 shows the correlation between this 
measure and the more traditional risk measures. 
  

 𝝈 𝒓𝒎𝒊𝒏 MaxDD 𝑹𝑪𝑮𝟏%,𝑬𝑽𝑻  

𝝈 1 -0.88 -0.81 0.05 

𝒓𝒎𝒊𝒏 -0.88 1 0.87 -0.38 

MaxDD -0.81 0.87 1 -0.28 

𝑹𝑪𝑮𝟏%,𝑬𝑽𝑻  0.05 -0.38 -0.28 1 

Table 2: The correlations among some risk measures. 
The RCG risk measure has very small correlation with 
other measures. 

𝑅𝐶𝐺𝑝 ,𝐸𝑉𝑇 has low correlations with volatility and other 

traditional measures. We therefore believe that 𝑅𝐶𝐺𝑝 ,𝐸𝑉𝑇  

adds additional information to our risk estimation process. It 
is an alternative risk measure that is distinct from traditional 
risk measures. 
 



IV. Bias Ratio 

 
     The bias ratio (Riskdata 2006) is a measure that seeks to 
measure the bias inherent in valuing illiquid assets. The bias 
to report slightly positive rather than slightly negative returns 
forms the basis for this measure. In short, portfolios with 
assets whose values may be valued with some discretion 
generally have distorted return distributions around zero. 
The bias ratio is defined as 

𝐵𝑅 =
𝑐𝑜𝑢𝑛𝑡𝑠 𝑟𝑡|𝑟𝑡 ∈ [0,𝜎] 

1 + 𝑐𝑜𝑢𝑛𝑡𝑠 𝑟𝑡|𝑟𝑡 ∈ [−𝜎, 0] 
 (7) 

where 𝑟𝑡  is the return and 𝜎 is the volatility. It is designed to 

detect the abnormal distortion of return distribution shown in 
Fig. 2. 
 

 
Figure 2: Definition of the Bias Ratio. The blue line is 
the return distribution without biased asset valuation. 
The red line is the return distribution with biased asset 
valuation. 

The bias ratio positively correlates with the liquidity of the 
assets managed by the hedge funds, i.e. the more illiquid 
the underlying securities the larger the bias ratio. 
Calculating the ratio for return streams assists in detecting 
the existence of biased valuation of illiquid assets. In 
general, hedge funds with largely liquid assets that are 
exchange traded with independent valuations have smaller 
bias ratios between 1 and 2. A large bias ratio for such liquid 
funds would suggest a fraud. Funds related to the Madoff’s 
fraud, had biased ratios of 7.5 to 8.0, even though the 
underlying securities were from the S&P100 stocks. 
 

V. Performance Measures 

     There are many performance measures which account 

for both risk and return in their calculations. The most widely 

used performance measure is the Sharpe ratio. This uses 

volatility as the risk measure, which may be an inadequate 

measure. More importantly, the Sharpe ratio has been 

subject to manipulation in many ways usually involving use 

of instruments with non linear payoffs like puts and calls. 

The use of these instruments tends to convert a Gaussian 

distribution into a bi-modal distribution that could lead to an 

underestimation of volatility, and in turn higher Sharpe ratios. 

Usually, to overcome these problems, a multi-valued 

performance measure is used as they provide additional 

information and are harder to manipulate.  However, a multi-

valued performance measure makes it harder to rank 

performance of different portfolios, and in turn makes it 

harder for investors to differentiate managers who are 

performing well from those who are not. A single-valued 

performance measure (Goetzmann, et al. 2007) that does 

not suffer from these drawbacks may be defined as 

Θ =
1

(1 − 𝜌)
ln  

1

𝑇
  

1 + 𝑟𝑓𝑡 + 𝑟𝑡

1 + 𝑟𝑓𝑡
 

1−𝜌𝑇

𝑡=1

  (8) 

where 𝑟𝑓𝑡  and 𝑟𝑡  are the risk free rate and the excess return 

on the fund over period 𝑡, and 𝜌 is relative risk aversion. 

This measure is based off a power utility function and not 

easily amenable to dynamic and static manipulations 

(Goetzmann, et al. 2007). The relative risk aversion 

parameter is based off the benchmark returns. 

ρ =
ln 𝐸 1 + 𝑟𝑓 + 𝑟𝑏  − ln 1 + 𝑟𝑓 

𝑉𝑎𝑟 ln 1 + 𝑟𝑓 + 𝑟𝑏  
 (9) 

where 𝑟𝑏  is the return of benchmark. Fig. 3 shows the 

relation between the Sharpe ratio and  Θ for our database of 

848 hedgefunds 

 

Figure 3: The Sharpe ratio and the performance measure 𝚯. 

As shown in Fig. 3, the Sharpe ratio and the performance 

measure  Θ  are strongly correlated in some cases and 

uncorrelated in other cases. Out of 848 funds, there are 802 

funds with Θ > −0.02, and the correlation between Sharpe 

ratio and Θ is 0.79. However, if we include the 46 funds with 

Θ < −0.02, the correlation drops to 0.33. For those 46 funds, 

there is no correlation between two measures. This is an 

indication of either an underestimation of risk or else a 

manipulation of Sharpe ratio. 

 

III. CONCLUSION 

     In this note, we provide a brief overview of the 

shortcomings of some commonly used traditional risk and 

performance measures, and simultaneously introduce some 

alternative measures. Table 3 shows the correlations among 



all those measures. The alternative risk and performance 

measures introduced in this note have low correlations to 

traditional measures. We believe that they therefore add 

important new information in the estimation of risk and the 

measurement of performance. 

 
𝝈 𝒓𝒎𝒊𝒏 MaxDD 𝑹𝑪𝑮𝟏%,𝑬𝑽𝑻  Bias Ratio 

Sharpe 
Ratio 

𝚯 

𝝈 1 -0.88 -0.81 0.05 -0.14 -0.27 -0.62 

𝒓𝒎𝒊𝒏 -0.88 1 0.87 -0.38 0.05 0.44 0.71 

MaxDD -0.81 0.87 1 -0.28 0.08 0.61 0.51 

𝑹𝑪𝑮𝟏%,𝑬𝑽𝑻  0.05 -0.38 -0.28 1 0.36 -0.28 -0.15 

Bias Ratio -0.14 0.05 0.08 0.36 1 0.14 0.03 

Sharpe 
Ratio 

-0.27 0.44 0.61 -0.28 0.14 1 0.33 

𝚯 -0.62 0.71 0.51 -0.15 0.03 0.33 1 

Table 3: The correlations between risk and performance measures
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